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Goals

• Describe the issues associated with use of materials at 
cryogenic temperatures

• List suitable and unsuitable materials for use in 
cryogenic systems

• Give the physical explanation behind the variation of 
some material properties with temperature

• Provide pointers to material properties
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Issues with Materials at 
Cryogenic Temperatures

• Material properties change significantly with 
temperature. These changes must be allowed for in 
the design.

• Many materials are unsuitable for cryogenic use.

• Material selection must always be done carefully. 
Testing may be required.
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Material Selection

• Some suitable materials for cryogenic use include:

– Austenitic stainless steels e.g. 304, 304L, 316, 321
– Aluminum alloys e.g. 6061, 6063, 1100
– Copper e.g. OFHC, ETP and phosphorous deoxidized
– Brass
– Fiber reinforced plastics such as G –10 and G –11
– Niobium & Titanium (frequently used in superconducting RF  systems)

• But becomes brittle at cryogenic temperatures

– Invar (Ni /Fe alloy) useful in making washers due to its lower coefficient of 
expansion

– Indium (used as an O ring material)
– Kapton and Mylar (used in Multilayer Insulation and as electrical 

insulation
– Quartz (used in windows)
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Material Selection

• Unsuitable materials include:

– Martensitic stainless steels Undergoes ductile to brittle
transition when cooled down.

– Cast Iron – also becomes brittle

– Carbon steels – also becomes brittle. Sometimes used in 
300 K vacuum vessels but care must be taken that breaks 
in cryogenic lines do not cause the vacuum vessels to cool 
down and fail.

– Rubber, Teflon and most plastics (important exceptions are 
Kel-F and UHMW used as seats in cryogenic valves)
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Thermal Expansivity

• Large amounts of contraction can occur when 
materials are cooled to cryogenic temperatures. 

• Points to consider:

– Impact on alignment

– Development of interferences or gaps due to dissimilar 
materials

– Increased strain and possible failure

– Impact on wiring

– Most contraction occurs above 77 K
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Thermal Expansivity
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a=1/L (dL/dT)
Results from anharmonic
component in the potential 
of the lattice vibration



Thermal Expansivity

Summer 2021 J. G. Weisend II 8

• a goes to 0 at 0 slope as T approaches 0 K

• a is T independent at higher temperatures

• For practical work the integral thermal 
contraction is more useful



Integral Thermal Contraction
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Material DL / L ( 300 – 100 ) DL / L ( 100 – 4 )

Stainless Steel 296 x 10 -5 35 x 10 –5

Copper 326 x 10 -5 44 x 10 -5

Aluminum 415 x 10 -5 47 x 10 -5

Iron 198 x 10 -5 18 x 10 -5

Invar 40 x 10 -5 -

Brass 340 x 10 –5 57 x 10 -5

Epoxy/ Fiberglass 279 x 10 –5 47 x 10 -5

Titanium 134 x 10 -5 17 x 10 -5



Heat Capacity or
Specific Heat of Solids

• C = dU/dT or Q/mDT
• In general, at cryogenic temperatures, C decreases rapidly 

with decreasing temperature.
• This has 2 important effects:

– Systems cool down faster as they get colder
– At cryogenic temperatures, small heat leaks may cause large 

temperature rises

• Where is the heat stored ?
– Lattice vibrations
– Electrons (metals)

• The explanation of the temperature dependence of the 
specific heat of solids was an early victory for quantum 
mechanics
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Lattice Contribution

• Dulong Petit Law

• Energy stored in a 3D oscillator = 3NkT = 3RT

• Specific heat = 3R = constant

– Generally OK for  T= 300 K or higher

– Doesn’t take into account quantum mechanics
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Einstein & 
Debye Theories

• Einstein explains that atoms  may only vibrate at 
quantized amplitudes. Thus:

• This results in a temperature dependent specific heat

• Debye theory accounts for the fact  that atoms in a 
solid aren’t independent & only certain frequencies 
are possible
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Debye Theory

• The Debye theory gives the lattice specific heat of 
solids as:

• As T ~ 300 K  C~ 3R (Dulong Petit)

• At T< q/10 C varies as T 3
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Impact of Electrons
in Metals on Specific Heat

• Thermal energy is also stored in the free electrons in 
the metal

• Quantum theory shows that electrons in a metal can 
only have certain well defined energies

• Only a small fraction of the total electrons can be 
excited to higher states & participate in the specific 
heat

• It can be shown that Ce = gT
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Specific Heat of Solids

• The total specific heat of metals at low temperatures 
may be written: 

C = AT3 +BT  - the contribution of the electrons is only 
important at < 4 K

• Paramagnetic materials and other special materials 
have anomalous specific heats -always double check
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Specific Heat of Common Metals 
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Thermal Conductivity

• Q = -K(T) A(x) dT/dx

• K Varies significantly with temperature

• Temperature dependence must be considered when 
calculating heat transfer rates
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Thermal Conductivity of Metals

• Energy is transferred both by lattice vibrations 
(phonons) and  conduction electrons

• In “reasonably pure” metals the contribution of the 
conduction electrons dominates

• There are 2 scattering mechanisms for the 
conduction electrons: 
– Scattering off impurities (Wo = b/T)
– Scattering off phonons (Wi = aT2)

• The total electronic resistivity has the form :
We = aT2 + b/T
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Thermal Conductivity 
of Metals Due to Electrons

From Low Temperature Solid State Physics –Rosenburg

• The total electronic resistivity has the form : We = aT2 + b/T           K~ 1/We
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Heat Conduction by 
Lattice Vibrations in Metals

• Another mechanism for heat transfer in metals are 
lattice vibrations or phonons

• The main resistance to this type of heat transfer is 
scattering of phonons off conduction electrons

• This resistance is given by W = A/T2

• Phonon heat transfer in metals is generally neglected
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Thermal Conductivities of Metals
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From Lakeshore 
Cryotronics



Thermal Conductivity
Integrals

• The strong temperature dependence of K makes heat 
transfer calculations difficult

• The solution is frequently to use thermal 
conductivity integrals

• The heat conduction equation is written as: 
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Thermal Conductivity
Integrals
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• G is the geometry factor

• q is the thermal conductivity integral
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Thermal Conductivity
Integrals

• Advantages:

– Simple

– Only end point temperatures are important. (assuming 
there are no intermediate heat sinks) The actual 
temperature distribution is not. 

– Thermal conductivity integrals have been calculated for 
many engineering materials

– This is quite useful for heat leak calculations

Summer 2021 J. G. Weisend II 24



Thermal Conductivity 
Integrals of Metals
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From Handbook of Cryogenic 
Engineering, J. Weisend  II 

(Ed)



Thermal Conductivity Integrals of 
Metals & Nonmetals
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Electrical Resistivity

• Ohm’s Law V=IR

– R=rL/A where r is the electrical resistivity

• Conduction electrons carry the current & there are 2 
scattering mechanisms

– Scattering of electrons off phonons

– Scattering of electrons off impurities or defects (e.g. 
dislocations)
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Electrical Resistivity 
of Metals

• For T ~ q phonon scattering dominates

– r is proportional to T

• For T<< q impurity scattering dominates

– r is constant

• Between these two regions (T~ q/3)

– r is proportional to T5 for metals

• RRR = r (300 K)/r (4.2K) an indication of metal purity
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Electrical Resistivity of Copper

Electrical Resistivity of Copper

From Handbook of Materials for Superconducting Machinery (1974)
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Electrical Resistivity 
of Other Materials

• Amorphous materials & semiconductors have very different resistivity 
characteristics than metals

• The resistivity of semiconductors is very non linear & typically increases
with decreasing T due to fewer electrons in the conduction band

• Superconductivity – A later lecture
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Material Strength

• Tends to increase at low temperatures (as long as 
there is no ductile to brittle transition)

• 300 K values are typically used for conservative 
design. Remember all systems start out at 300 K & 
may unexpectedly return to 300 K.

• Always look up values or test materials of interest
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Typical Properties of 304 Stainless Steel
From Cryogenic Materials Data Handbook (Revised)
Schwartzberg et al ( 1970)
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Sources of Data for 
the Cryogenic Properties of Material
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• “A Reference Guide for Cryogenic Properties of Materials”, 
Weisend, Flynn, Thompson; SLAC-TN-03-023

• Cryogenic Materials Data Handbook: Durham et al. 
C13.6/3.961 : 

• MetalPak: computer code produced by CryoData

http://www.htess.com/software.htm

• CryoComp: computer Code produced by Eckels
Engineering

http://www.eckelsengineering.com/

• Proceedings of the International Cryogenic Materials 
Conferences (ICMC)

http://www.htess.com/software.htm
http://www.eckelsengineering.com/

